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Abstract: (+)-Anatoxin-a has been synthesized in 8 steps, starting from succinimide, 4-bromo-l- 
-butene and dimethyl (2-oxopropyl)phosphonate, by employing as the key step an 
intramolecular reaction of an N-acyliminium precursor with an cu,&unsaturated 
ketone moiety, induced by saturated HCl in MeOH at -5OOC. 

Anatoxin-a (1) is a potent neurotoxin, produced by certain strains of the fresh water blue 

green alga Anabaena flos-aquae'. Both its unique structure (the only natural product identified 

to date with the 9-azabicyclo[4.2.1]nonane skeleton), and its significant biological properties 

(powerful nicotinic acetylcholine receptor agonist2) have aroused the interest of synthetic 

chemists. This has resulted in a number of successful syntheses of the alkaloid (I), both as 

racemate 3 and as pure enantiomer 2,4 . In this letter we wish to report yet another synthesis 

of racemic anatoxin-a, which, however, stands out, because it numbers only 8 steps from commerc- 

ially available and inexpensive starting materials. In addition, our synthesis features a 

novel reaction mode of N-acyliminium ions, in which the e-carbon of an cu,B-unsaturated ketone 

formally reacts as the nucleophilic centre. 

Our approach bears resemblance to Rapoport's synthesis 2,5 , in which the key step is the 

Mannich type cyclization of iminium ion 2. In connection with our work on N-acyliminium - 

chemistry, we reasoned that a successful conversion of 3 to 1 could mean a major improvement - - 

compared to Rapoport's route for two reasons. Firstly, use of a carbomethoxy group on nitrogen 

would enhance the electrophilicity of the iminium ion6 and reduce the number of protection- 

deprotection steps of nitrogenL'. Secondly, use of an cu,B-unsaturated ketone as a nucleophile 

anatoxin-a 
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would lead in a more direct way to the desired unsaturated bicyclic system. The latter object- 

ive was based on a recent finding, during our studies toward the synthesis of elaeokanine-B7a, 

that dissolution of enone 4 in methanol, saturated with HCl, gives rise to quantitative formation 

- of chloride 57b. On dehydrochlorination of 2 using 1,5-diazabicycloC4.3.01-5-nonene (DBN) in 

refluxing toluene the desired enone 6 was obtained'. - 

Me 

c 

Our synthesis of anatoxin-a began with the conversion of succinimide into butenylpyrrolidone 

1 in a one-pot reaction. Succinimide was first transformed into a Mg-salt (MeMgCl, THF) and 

then treated with 2 eq of the Grignard reagent, derived from 4-bromo-1-butene (THF, 18 h, 20°C18. 

To the resultant mixture was added 1 eq of NaBH3CN and some Methyl Orange indicator (IM inwater) 

followed by 6 N HCl, until the colour changed to red'. Usual work-up provided 1 lo in 53% yield 

based on succinimide (27% based on Y-bromo-I-butene). 

Reaction of 

20°C) afforded 

followed by in 

I 
R 

1 R=H 

3 R =CO,Me 

Et0J-J-A 

HMe 2 

9 

the lithium salt of 1 (LDA, THF, -78°C) with methyl cyanoformate l2 (THF, -78OC - 

carbamate 8" in 69% yield. Reduction13 of & (NaBH4, little H2S04, EtOH, -2OOC), 

situ ethanolysis l3 (EtOH, excess H2SO4, -2OOC _ 20°C) gave ethoxycarbamate 2 10 in 

77% yield, which was >95% a single stereoisomer according to 13 C NMR spectrometry. With the 

precursor for an N-acyliminium intermediate in place, the side chain was next elaborated. Ozon- 

olysis of 2 (CH2C12, -78V) followed by reduction with dimethyl sulfide (48 h, 20°C) furnished 

aldehyde 10" in 75% yield. This aldehyde was converted into enone 111' through reaction with - - 

dimethyl (2-oxopropyl)phosphonate under the Masamune-Roush conditions l4 (iPr2NEt, LiCl, MeCN, 

2O’T) in 83% yield, thus completing the synthesis of the precursor for the key cyclization step. 

A solution of HCl in MeOH, saturated at -50°C, was added to ethoxycarbamate 11 at -5C'C. 

The resultant solution was stirred for 18 h, while the temperature was allowed to slowly rise to 
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2ooc. The reaction mixture was then poured out into saturated aqueous sodium bicarbonate 

worked up as usual (including flash chromatography), to furnish an unseparable mixture of 

and 

stereo- 

isomeric chlorides 12 15 - and enone lJ, in yields of 47% and ll%, respectively, according to 

1 H NMR spectroscopy. This mixture was refluxed in toluene in the presence of DBN to give pure 

enone 13" in 60% yield. The mechanism of the ring closure reaction was not investigated, but - 

we suppose that 14 serves as an intermediate, since in 14 the a-carbon of the original cr,f3- - - 

unsaturated ketone is now strongly nucleophilic. Chloride 14 could arise via conjugate HCl - 

addition followed by methyl enol ether formation. 

Our synthesis of (?)-anatoxin-a (1) was completed through deprotection of nitrogen, by using 

in situ generated Me SiI 
3 

(Me SiCl, 16 
3 

NaI) in refluxing acetonitrile . This last step (55% yield) 

provided 1 as a colourless oil, which showed a 'H NMR spectra, fully identical with literature 

datallb. Thus, we have synthesized racemic anatoxin-a in 8 steps from readily available start- 

ing materials. The overall yield (3-4s from succinimide) leaves something to be desired, but 

most steps are unoptimized. Results of optimization studies, which are currently in progress 

will be detailed in a full paper. 
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6.08 (m3 CH=CH ) 4.84-5.24 (m CH=CH ), 3.68 (m, NCH), 1.4032.54 (m, 8H); 
IR(CHC~ ): 3210 (NH), 1685 cm-' (GO); 'H NMR (100 MHz, CDCl ): 6 7.32 (br ~3 NH), 5.60- 

C NMR (63 
MHz, CD&T: 621+'8.4 (s), 137-i (d),iiI5.0 (t), 54.0 (d), 35.7 (t), 30.1 (t), 29.9 (t), 
27.0 (t).3 
IR(CHC~ ): 1780 and 1720 (GO), 1638 cm-' (C=C); 'H NMR (100 Ml-Is, CDC13): 6 5-64-6.06 
(m, e=$H2), 4.94-5.24 ( m, CHXS), 4.24 (m, NCH), 3.89 (s, CH3), 1.46-2.74 (m, 8H). 

IR(CHC1 ): 1685 (GO), 1638 cm-' (C=C); 'H NMR (100 MHz, CDCl ): 6 5.66-6.10 
5.34 (my CHOEt), 4.88-5.20 (m, CH-Cl,), 3.75 (s CO&H ), 3.3i-4.05 (m, NCH 

(m, CH=CH ), 
+ OCH -H 

1.03-2.28 Tm, 8H), 1.19 (t, J=7 Hz, OCH CH ); I& NMR 763 MHz CDCl ): 6 156 0 (g s? 
): 

138.0 (d), 114.1 (t), 87.9 (br d), 6224~?br t), 57.6 (br d)' 51.g3(q) 35.; (br t) ' 
31.9 (br t), 29.8 (t), 28.7 (br t), 14.9 (q); some signals ari broad dui to hindered' 
rotation. 
lR(CHCl,): I687 and 1670 (C=O), 1622 cm-' (C=C); 'H NMR (100 MHz CDCl ): 6 6.85 (dt 
J=16, ~Hz, Cl+CHCO), 6.14 (dt, 5~16, 2Hz, CH=CHCO), 5.36 (m, CHOit), 3340-4.06 (m, NbH + 
OCH CH3), 3.75 (s, CO CH ), 2.26 (s, '@NMR (50 CDC12):36 COCH ), 

MHz, 198.2 (s) 
1:38-2.44 H)- OCIIaCK (m 1.18 (t J=7Hz ): 

62.4 (br t), 57.4 (br3d), 52.1 (q), 15538 $3.9 (br (br s) 147 5'(d) 1 (dj 87 9'(br 
26.5 (q), 14.9 (q). t), 

3i.8 (br t),'28.8'(br.t;, 'I31 28.3 d)T3 
(t), 

IR(CHC1,): 1685 (C-O), 1630 cm-' (C=C); 'H NMR (100 MHz, CDCl )* 6 6.85 (br t), J=5.5 
Hz, L=CH), 5.24 (br d, J-6 Hz, NCH),4.46 (m, NCH), 3.69 and 3‘164 (br s, OCH3), 2.31 
(s, COCH3), 1.35-2.63 (m, 8H). Exact mass calcd for C,2H17N03 223.1208, found 223.1208. 
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